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STRONG RING EXTENSIONS AND φ-PSEUDO-VALUATION

RINGS

AYMAN BADAWI AND DAVID E. DOBBS

Abstract. In this paper, we extend the concept of strong extensions of

domains to the context of (commutative) rings with zero-divisors. Let T be

an extension ring of a ring R. A prime ideal P of R is called T-strong if,

whenever x, y ∈ T satisfy xy ∈ P , then either x ∈ P or y ∈ P . If each P ∈

Spec(R) is T -strong, we say that R ⊆ T is a strong extension. We use the

concept of strong extension to give a characterization of φ-pseudo-valuation

rings. We show that the theory of strong extensions of rings resembles that

of strong extensions of domains.

1. Introduction

We assume throughout that all rings are commutative with 1 6= 0 and that all

ring extensions are unital. If R is a ring, then Tot(R) denotes the total quotient

ring of R, Z(R) denotes the set of zero-divisors of R, Nil(R) denotes the set of

nilpotent elements of R, U(R) denotes the set of units of R, Spec(R) denotes the

set of prime ideals of R, and Rred := R/Nil(R) denotes the canonically associated

reduced ring of R. ”Dimension” and “dim(. . . )” refer to Krull dimension. We

devote the next four paragraphs to recalling some background material.

As in [15], let R ⊆ T be an extension of (integral) domains. A prime ideal P

of R is called T-strong if, whenever x, y ∈ T satisfy xy ∈ P , then either x ∈ P or

y ∈ P . If each P ∈ Spec(R) is T -strong, we say that R ⊆ T is a strong extension.

The concept of strong extension of domains is a generalization of the study of

pseudo-valuation domains, a type of quasilocal integral domain introduced by

Hedstrom-Houston in [16]. Recall that a domain R, with quotient field K, is

said to be a pseudo-valuation domain (or, in short, a PVD) if each P ∈ Spec(R)
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satisfies the following condition: whenever x, y ∈ K and xy ∈ P , then either

x ∈ P or y ∈ P . Thus, the concept of strong extensions of domains broadens

the study of the above condition by allowing the role of K to be played by an

arbitrary domain containing R.

In [9], D. F. Anderson and the authors generalized the concept of pseudo-

valuation domains to the context of arbitrary rings (rings R with Z(R) possibly

nonzero). Recall from [9] that a ring R is called a pseudo-valuation ring (PVR)

if every prime ideal of R is strongly prime, in the sense that aP and bR are

comparable under inclusion for all a, b ∈ R. It was shown in [9] that a domain is

a PVD if and only if it is a PVR.

In [3], the first-named author gave another generalization of pseudo-valuation

rings. Recall from [12] and [8] that a prime ideal of a ring R is called a divided

prime (ideal of R) if P ⊆ (x) for each x ∈ R\P . Thus, a divided prime ideal of R

is comparable under inclusion with every ideal of R. Let H := {R | R is a ring and

Nil(R) is a divided prime ideal of R }. Observe that if R is a domain, then R ∈ H.

For any ring R ∈ H, the ring homomorphism φ = φR : Tot(R) −→ RNil(R), given

by φ(a/b) := a/b for each a ∈ R and b ∈ R\Z(R), was introduced in [3]. Note

that φ|R : R → RNil(R) is a ring homomorphism satisfying φ(x) = x/1 for each

x ∈ R; and that Tot(φ(R)) = RNil(R). (Note also that the proofs of these two

assertions do not use the “divided” aspect of the prime ideal Nil(R) of R.)

Let R ∈ H, and put K := RNil(R). As in [3], a prime ideal Q of φ(R) is said

to be K-strongly prime if, whenever x, y ∈ K and xy ∈ Q, then either x ∈ Q or

y ∈ Q. A prime ideal P of R is said to be a φ-strongly prime ideal of R if φ(P ) is

a K-strongly prime ideal of φ(R). It is known that the prime ideals of φ(R) are

the sets that are (uniquely) expressible as φ(P ) for some prime ideal P of R (cf.

[1, Lemma 2.5]), the key fact being that ker(φ) ⊆ Nil(R). If each P ∈ Spec(R)

is a φ-strongly prime ideal, then R is called a φ-pseudo-valuation ring (φ-PVR).

It was shown in [6, Proposition 2.9] that a ring R ∈ H is a φ-PVR if and only if

Rred is a PVD. Any PVR in H is a φ-PVR. An example of a φ-PVR which is not

a PVR was given in [4].

Once again, let R ∈ H, with K := RNil(R). Recall from [5] that R is called a φ-

chained ring if, for every x ∈ K\φ(R), we have x−1 ∈ φ(R). It is known that a ring

R ∈ H is a φ-chained ring if and only if Rred is a valuation domain [1, Theorem

2.7]. Observe that since Nil(R) is a divided prime ideal of R, then Nil(R) is

also the nilradical of Tot(R) and that ker(φ) is a common ideal of R and Tot(R).

Other useful features of each ring R ∈ H include the following: (i) φ(R) ∈ H;

(ii) Tot(φ(R)) = RNil(R) has only one prime ideal, namely, Nil(φ(R)); (iii) φ(R)

is naturally isomorphic to R/Ker(φ); (iv) Z(φ(R)) = Nil(φ(R)) = φ(Nil(R)) =
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Nil(RNil(R)); and (v) (RNil(R))red = RNil(R)/Nil(φ(R)) = Tot(φ(R))/Nil(φ(R))

is the quotient field of φ(R)red. If I is a nonnil ideal of a ring R ∈ H, observe that

Nil(R) ⊆ I. For further studies on rings that are in the class H, we recommend

[1], [2], [3], [4], [5], [6], [7], and [11].

In this paper, we extend the concept of strong extensions of domains to the

context of rings with zero-divisors. Let T be an extension ring of a ring R. A

prime ideal P of R is called T-strong if, whenever x, y ∈ T satisfy xy ∈ P , then

either x ∈ P or y ∈ P . If each P ∈ Spec(R) is T -strong, we say that R ⊆ T is a

strong extension. We use the concept of strong extension of rings to characterize

φ-pseudo-valuation rings (see Corollaries 2.10 and 2.11) as well as several other

classes of rings. In short, we show that the theory of strong extensions of rings

resembles that of strong extensions of domains by establishing the φ-theoretic

analogues of many of the results in [15].

Throughout the paper, we use the technique of idealization of a module to

construct examples. Recall that for an R-module B, the idealization of B over

R is the ring formed from R × B by defining addition and multiplication as

(r, a) + (s, b) := (r + s, a + b) and (r, a)(s, b) := (rs, rb + sa), respectively. A

standard notation for this “idealized ring” is R(+)B. See [17] for basic properties

of rings resulting from the idealization construction.

2. Strong overring extensions

We begin by considering the passage of the “strong extension” property from

a ring extension to the induced extension of the associated reduced rings.

Theorem 2.1. Let R ⊆ T be rings. Then the following conditions are equivalent:

(1) Nil(R) = Nil(T ) and Rred ⊆ Tred is a strong extension;

(2) R ⊆ T is a strong extension.

Proof. (2) ⇒ (1): Assume (2). Of course, Nil(R) ⊆ Nil(T ). To prove the

reverse inclusion, it suffices to show that if w ∈ Nil(T ), then w ∈ P for each P ∈

Spec(R). This, in turn, follows from the facts that wn = 0 ∈ P for some n ≥ 1

and P is T -strong. Therefore, Nil(R) = Nil(T ).

It remains to prove that A := Rred ⊆ B := Tred is a strong extension. Note,

by what we just proved, that B = T/Nil(R). Our task is to show that if P ∈

Spec(A) and x, y ∈ B satisfy x · y ∈ P , then either x ∈ P or y ∈ P . Write

P = P +Nil(R), x = x+Nil(R) and y = y +Nil(R), for some P ∈ Spec(R) and

x, y ∈ T . As x · y ∈ P , it follows that xy ∈ P + Nil(R) = P . Therefore, by (2),

either x ∈ P or y ∈ P , and so either x ∈ P or y ∈ P , as required.

(1) ⇒ (2): Assume (1). We must show that if P ∈ Spec(R) and x, y ∈ T satisfy
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xy ∈ P , then either x ∈ P or y ∈ P . Consider A := Rred ⊆ B := T/Nil(T ),

which, by (1), is a strong extension. Also, by (1), B = T/Nil(R). Consider

P := P + Nil(R) ∈ Spec(A) and x := x + Nil(R), y := y + Nil(R) ∈ B. As

x · y = xy + Nil(R) ∈ P + Nil(R) = P and P is T -strong, it follows that either

x ∈ P or y ∈ P . Thus, either x ∈ P or y ∈ P , to complete the proof. �

Example 2.3 will establish that the conditions in (1) in Theorem 2.1 are log-

ically independent. That discussion includes a connection with the next result,

which is of independent interest.

Proposition 2.2. Let R ⊆ T be a strong extension of rings. Then the radical of

(R : T ) in T coincides with the radical of (R : T ) in R; that is, {t ∈ T | tn ∈ (R :

T ) for some positive integer n} = {r ∈ R | rn ∈ (R : T ) for some positive integer

n}.

Proof. Without loss of generality, R 6= T . Next, note that one inclusion is

trivial. Therefore, it suffices to show that if t ∈ T is such that u := tn ∈ (R : T )

for some positive integer n, then t ∈ R. If u ∈ U(R), then it follows from the

fact that uT ⊆ R that T = u−1uT ⊆ u−1R = R, a contradiction. Thus, u is a

nonunit of R, and so we can choose P ∈ Spec(R) such that tn = u ∈ P . As P is

T -strong, t ∈ P ⊆ R, to complete the proof. �

Example 2.3. For ring extensions R ⊆ T , the conditions “Nil(R) = Nil(T )”

and “Rred ⊆ Tred is a strong extension” are logically independent.

Proof. Perhaps the easiest way to see that the first condition does not imply

the second condition is to let R be any domain that is not a PVD (for instance,

Z or Q[[X, Y ]]) and then take T to be the quotient field of R. In this example,

Nil(R) = 0 = Nil(T ), although Rred) ∼= R ⊆ T ∼= Tred is not a strong extension

(since R is not a PVD).

One way to see that the second condition does not imply the first condition

is the following. Let R be any (nonzero) ring, and then let T denote the ring of

dual numbers over R; that is, T := R[X]/(X2) = R ⊕ Rx, where x := X + (X2)

satisfies x2 = 0. If a, b ∈ R and n ≥ 1, it is easy to prove by induction that

(a + bx)n = an + nan−1bx. As a consequence, Nil(T ) = Nil(R) ⊕ Rx, which is

unequal to Nil(R) since R is nonzero. On the other hand, Rred ⊆ Tred is a strong

extension for the most trivial of reasons. Indeed, the above description of Nil(T )

easily leads to the canonical map Rred → Tred being an isomorphism. �

It is interesting to note that the preceding example R ⊂ T complements The-

orem 2.1 and Proposition 2.2. Indeed, in that example, (R : T ) = 0, and so the
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presence in T \R of the nilpotent element x ensures, by virtue of Proposition 2.2,

that R ⊂ T is not a strong extension. Accordingly, by Theorem 2.1, either Nil(R)

fails to coincide with Nil(T ) or Rred ⊂ Tred fails to be a strong extension. Of

course, the above discussion shows that that exactly one of these failures occurs.

The next example shows that strong extensions with nontrivial zero-divisors

are plentiful.

Example 2.4. There exists a strong overring extension R ⊂ T (of distinct rings)

for which neither R nor T is a domain and neither R nor T is quasilocal.

Proof. By the proof of [15, Example 2.1], there exists a strong overring extension

of distinct domains A ⊂ B for which neither A nor B is quasilocal. Consider the

idealizations R := A(+)B and T := B(+)B. Then it is routine to verify that

Nil(R) = Nil(T ) = Z(R) = Z(T ) = {0}(+)B. In particular, neither R nor T

is a domain. Moreover, R (resp, T ) is not quasilocal since A (resp., B) is not

quasilocal. A calculation reveals that T is an overring of R. (In detail, if b ∈ B

is expressed as b = a1a
−1
2 for suitable a1, a2 ∈ A, then (b, 0)(a2, 0) = (a1, 0) ∈ T ,

whence (b, 0) = (a1, 0)(a2, 0)−1 in the total quotient ring of T .) Finally, since

Rred
∼= A ⊂ B ∼= Tred is a strong extension, it follows from Theorem 2.1 that

R ⊂ T is a strong extension. The proof is complete. �

Beginning with a characterization of a class of going-down rings with zero-

divisors [14, Corollary 2.6], there has been considerable interest in the class of

rings R such that Z(R) = Nil(R) as a generalization of the class of domains. In

part, this has been possible technically because the total quotient ring of any such

R is conveniently described as a localization of R [14, Proposition 2.3] and the

localization of such R at any of its prime ideals can be viewed as an overring of R

[10, Proposition 2.5 (a)]. The next result contributes to the theme of extending

results on domains to the context of rings R satisfying Z(R) = Nil(R) by gener-

alizing parts (i) and (ii) of [15, Theorem 2.3]. As parts (c) and (d) illustrate, our

best analogues of domain-theoretic results arise in case R ∈ H.

Note that if a ring R satisfies Z(R) = Nil(R), then R ∈ H if and only if Nil(R)

(which is necessarily a prime ideal of R) is divided. It is trivial that if R ∈ H and

Z(R) = Nil(R), then φR : Tot(R) −→ RNil(R) is the identity map, and so parts

of Theorem 2.5 could be formulated φ-theoretically.

Theorem 2.5. Let R be a ring such that Z(R) = Nil(R), and let P be a prime

ideal of R. Put D := Rred and P := P/Nil(R). Then:

(a) If R ⊆ RP is a strong extension, then the set of prime ideals of R which

contain P is linearly ordered (by inclusion) and R is quasilocal.
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(b) If P is a divided prime ideal of R, then P is a divided prime ideal of D.

(c) Suppose also that either R ⊆ RP is a strong extension or R ∈ H. Then P

is a divided prime ideal of D if and only if P is a divided prime ideal of R.

(d) Consider the following two conditions:

(1) P is a divided prime ideal of R and R/P is a PVD;

(2) R ⊆ RP is a strong extension.

Then (2) ⇒ (1); and if R ∈ H, then (1) ⇔ (2).

Proof. Note that Z(R) = Nil(R) is the unique minimal prime ideal of R (cf. [14,

Proposition 2.3 (b)]). In particular, D is a domain. Moreover, since localization

commutes with the formation of factor rings, we have a canonical identification

DP = RP /(Nil(R)RP ).

(a) Suppose that R ⊆ RP is a strong extension. Then, by Theorem 2.1,

Nil(R) = Nil(RP ) and D ⊆ E := RP /Nil(R) is a strong extension of rings.

The first of these facts ensures that Nil(R) is an ideal of RP , whence Nil(R) =

Nil(R)RP . Therefore, the above comments allow us to identify E with DP ,

which is an overring of the domain D and, hence, is itself a domain. Applying

the domain-theoretic result [15, Theorem 2.3 (ii)] to the extension D ⊆ E of

domains, we conclude that the set of prime ideals of D which contain P is linearly

ordered and D is quasilocal. The assertion then follows easily from standard

homomorphism theorems and the fact that each prime ideal contains a minimal

prime ideal [18, Theorem 10].

(b) Our task is to prove that if x ∈ D \ P , then P ⊆ Dx. We can write

x = x + Nil(R), with x ∈ R \ P . As P is assumed to be a divided prime ideal of

R, we have that P ⊆ Rx. Therefore,

P = P/Nil(R) ⊆ (Rx + Nil(R))/Nil(R) = (Rred)(x + Nil(R)) = Dx.

(c) Since Z(R) = Nil(R), [10, Proposition 2.5 (a)] allows RP to be viewed

(up to R-algebra isomorphism) as an overring of R. Hence, by [10, Lemma 2.6],

Z(RP ) = Nil(RP ). Accordingly, by [10, Proposition 2.5 (c)], P (resp., P ) is a

divided prime ideal of R (resp., D) if and only if PRP = P (resp., PDP = P ).

Thus, by the above identification of DP , it follows that P is a divided prime ideal

of D if and only if PRP /(Nil(R)RP ) is canonically identified with P/Nil(R).

We claim that, under the hypotheses of (c), Nil(R)RP = Nil(R). Indeed, if

R ⊆ RP is a strong extension, this was established in the proof of (a). If, on the

other hand, R ∈ H, then Nil(R) ⊆ Rx for each x ∈ R \ Nil(R), and so working

in the overring RP of R, we have Nil(R)RP = ∪{Nil(R)x−1 | x ∈ R \ P} ⊆

R ∩ Nil(RP ) = Nil(R). As the reverse inclusion is trivial, we have established

the claim in all cases. Therefore, P is a divided prime ideal of D if and only
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if PRP /Nil(R) is canonically identified with P/Nil(R); that is, by a standard

homomorphism theorem, if and only if PRP = P ; that is, if and only if P is a

divided prime ideal of R.

(d) (2) ⇒ (1): Assume (2). By Theorem 2.1, Nil(R) = Nil(RP ) and D ⊆

RP /Nil(R) is a strong extension. As Nil(R) = Nil(R)RP in this case, the above

description of DP therefore shows that D ⊆ DP is a strong extension. This

means, according to a domain-theoretic result [15, Theorem 2.3 (i)], that P is a

divided prime ideal of D and D/P is a PVD. By (c), P is a divided prime ideal

of R. Since D/P ∼= R/P , (1) follows.

Assume (1). By (b), P is a divided prime ideal of D. As D/P ∼= R/P , [15,

Theorem 2.3 (i)] implies that D ⊆ DP is a strong extension. In other words,

Rred ⊆ RP /(Nil(R)RP ) is a strong extension. Thus, by Theorem 2.1, (2) will

follow if we show that R ∈ H implies Nil(R) = Nil(R)RP = Nil(RP ). The first

of these equations was, in fact, already shown in the proof of (c); and the second

of these equations is an easy consequence of the fact that Z(R) = Nil(R) ⊆ P .

The proof is complete. �

It is interesting to note that the proof of Theorem 2.5 (b) did not use the

hypothesis that Z(R) = Nil(R). The next example shows that the converse

of Theorem 2.5 (b) fails, and so the hypothesis of Theorem 2.5 (c) cannot be

significantly weakened.

Example 2.6. There exist a ring R and a prime ideal P of R such that Z(R) =

Nil(R) and P := P/Nil(R) is a divided prime ideal of Rred, but P is not a

divided prime ideal of R. It can be further arranged that Rred is (isomorphic to)

any given domain which is not a field.

Proof. We specialize the second construction in Example 2.3. Let D be any

domain which is not a field, and let R := D[X]/(X2) = D ⊕ Dx, where x :=

X + (X2) satisfies x2 = 0. Since D is a domain, it is easy to check that Z(R) =

Dx = Nil(R), and so we have a canonical isomorphism Rred = (D⊕Dx)/Dx ∼= D.

Put P := Nil(R). Then P is a prime ideal of R, and of course, P = P/Nil(R) = 0

is a divided prime ideal of (the domain) Rred. However, P is not divided in

R. Indeed, if we pick a nonzero element a ∈ D \ U(D) and any b ∈ D, then

c := a + bx ∈ R \ P but P 6⊆ Dc. To see this, suppose, on the contrary, that

x = (d1 + d2x)c, for some d1, d2 ∈ D. Then d1a = 0 and d1b + d2a = 1, whence

d1 = 0 and d2a = 1, contradicting the choice of a as a nonunit. �

In comparing Theorem 2.5 with Example 2.6, one may hope that rings in H

would have their divided prime ideals exhibiting better behavior. The next result
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shows that this hope is realized and demonstrates another way in which H is a

more tractable working hypothesis than “Z(R) = Nil(R)”.

Proposition 2.7. Let R ∈ H, with φ = φR denoting the canonical ring homo-

morphism Tot(R) −→ RNil(R). Let P be any prime ideal of R. Then P is a

divided prime ideal of R if and only if φ(P ) is a divided prime ideal of φ(R).

Proof. We omit the easy proof of the “only if” assertion. Conversely, suppose

that φ(P ) is divided in φ(R). We will show that P is divided in R by proving

that if r ∈ R \ P and p ∈ P , then p ∈ Rr. We claim that φ(r) ∈ φ(R) \ φ(P ).

Otherwise, φ(r) = φ(q) for some q ∈ P , so that r − q ∈ ker(φ) ⊆ Nil(R) ⊆ P and

r = (r − q) + q ∈ P , a contradiction. This proves the above claim. Therefore,

since φ(P ) is divided in φ(R), we have φ(P ) ⊆ φ(R)φ(r). In particular, φ(p) =

φ(s)φ(r) = φ(sr) for some s ∈ R. Then w := p − sr ∈ ker(φ) ⊆ Nil(R). As

r 6∈ Nil(R) (since r 6∈ P ) and R ∈ H, we have Nil(R) ⊆ Rr and, in particular,

w = tr for some t ∈ R. Hence, p = w + sr = (t + s)r ∈ Rr, as required. �

Recall that for any ring R ∈ H, φR denotes the canonical ring homomorphism

Tot(R) −→ RNil(R). The next result collects some useful facts about the rings in

H.

Lemma 2.8. Let R ∈ H and let P be any prime ideal of R. Then:

(a) RP ∈ H.

(b) R/P is ring-isomorphic to φ(R)/φ(P ).

(c) φ|R induces ring-isomorphisms of domains Rred −→ φR(R)red and

(RP )red −→ φRP
(RP )red.

(d) φRP
(RP ) = φR(R)φR(P ) is an overring of φR(R).

(e) Nil(φRP
(RP )) = Nil(φR(R)).

Proof. (a) By hypothesis, Nil(R) is a divided prime ideal of R. Hence, Nil(RP ) =

Nil(R)RP is a prime ideal of RP . To show that it is also divided, we consider

ξ ∈ RP \ Nil(RP ) and need to show that Nil(R)RP ⊆ RP ξ. We can write ξ = r
z

for some r ∈ Nil(R) and z ∈ R \ P . Since Nil(R) is divided in R, we have

Nil(R) ⊆ Rr, whence Nil(R)RP ⊆ RrRP = r
z zRP = ξRP , as desired.

(b) This is [1, Lemma 2.5].

(c) It suffices to establish the first isomorphism, as one may then, by (a), repeat

the argument with R replaced by RP . Note that

φR(R)red := φR(R)/Nil(φR(R)) = φR(R)/φR(Nil(R))

which, by (b), is canonically identified with R/Nil(R) =: Rred.

(d) Note that the assertion is meaningful by virtue of (a). Now, [2, Lemma 3.8]
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handles the case where P is a nonnil prime ideal of R. Moreover, if P = Nil(R),

then φRP
(RP ) = RP = Tot(φR(R)) is also an overring of φR(R).

(e) By (d),

Nil(φRP
(RP )) = Nil(φR(R)φR(P )) = Nil(φR(R))φR(R)φR(P ) =

φR(Nil(R))φR(R)φR(P ) = φR(Nil(R))φR(P ).

By the proof of (d) (see the proof of [2, Lemma 3.8]), the last-displayed expression

is the same as φRP
(Nil(R)P ). We claim that this, in turn, can be simplified as

φR(Nil(R)).

It is clear that φR(Nil(R)) ⊆ φRP
(Nil(R)P ). For the reverse inclusion, we

will show that if u ∈ Nil(R) and v ∈ R \ P , then there exists w ∈ Nil(R) such

that u
v = w

1 ∈ RP . Indeed, since Nil(R) is divided in R, we have Nil(R) ⊆ Rv,

and so there exists w ∈ R such that u = wv. As Nil(R) is a prime ideal of R,

it follows that w ∈ Nil(R). Since u
v = w

1 , this completes the proof of the above

claim. Then the proof is complete since φR(Nil(R)) = Nil(φR(R)). �

One consequence of Proposition 2.7 is that if R ∈ H, then R is a divided ring

(in the sense of [8]) if and only if φR(R) is a divided ring. When coupled with

Lemma 2.8 (d), this implies that if R ∈ H, then R is a locally divided ring (in

the sense of [10]) if and only if φR(R) is a locally divided ring.

Theorem 2.9. Let R ∈ H and let P be a prime ideal of R. Then:

(a) Consider the domain D := Rred and the prime ideal P := P/Nil(R) of D.

Then the following conditions are equivalent:

(1) P is a divided prime ideal of R and R/P is a PVD;

(2) D ⊆ DP is a strong extension;

(3) φR(R) ⊆ φRP
(RP ) is a strong extension.

(b) If φR(R) ⊆ φRP
(RP ) is a strong extension, then the set of prime ideals of

R which contain P is linearly ordered (by inclusion) and R is quasilocal.

Proof. (a) By [15, Theorem 2.3 (i)], (2) ⇔ P is a divided prime ideal of D

and D/P is a PVD. In view of Theorem 2.5 (c) and the standard isomorphism

D/P ∼= R/P , we thus have that (2) ⇔ (1).

Now, by Theorem 2.1 and Lemma 2.8 (e), we have that (3) ⇔ φR(R)red ⊆

φRP
(RP )red is a strong extension. By Lemma 2.8 (c), this last condition is equiv-

alent to D ⊆ (RP )red being a strong extension. Thus, to prove that (3) ⇔ (2),

it suffices to produce a canonical isomorphism (RP )red
∼= DP . For this, observe

that

DP = (R/Nil(R))P/Nil(R)
∼= RP /(Nil(R)RP ) = RP /Nil(RP ) =: (RP )red.
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(b) By (a), P is a divided prime ideal of R and R/P is a PVD. The first of

these conditions ensures that P is contained in each maximal ideal of R; and the

second ensures (by [16, Corollary 1.3]) that R/P is quasilocal and that the set

of prime ideals of R/P is linearly ordered by inclusion. It follows by a standard

homomorphism theorem that R is quasilocal and that the set of prime ideals of

R which contain P is linearly ordered by inclusion. �

Note that in formulating Theorem 2.9 (a) for the context of rings in H, rather

than for rings in which each zero-divisor is nilpotent, we did not consider the

condition “R ⊆ RP is a strong extension” for the simple reason that the canonical

ring homomorphism R −→ RP need not be an injection. To recover a context

where something like R −→ RP is an inclusion (and, hence, possibly a strong

extension), we had recourse to a φ-theoretic formulation, in view of the “overring”

conclusion in Lemma 2.8 (d).

We next infer one of our main applications, an analogue of [15, Theorem 2.9].

Corollary 2.10. Let R ∈ H. Then R is a φ-PVR if and only if R has a prime

ideal P satisfying the following two conditions:

(i) φR(R) ⊆ φRP
(RP ) is a strong extension;

(ii) RP is a φ-chained ring.

Proof. By [6, Proposition 2.9], R is a φ-PVR if and only if (the domain) D :=

Rred is a PVD. Now, according to [15, Theorem 2.9], D is a PVD if and only if

there exists a prime ideal P of R such that the prime ideal P := P/Nil(R) of

R/Nil(R) =: Rred satisfies the following two conditions:

(a) D ⊆ DP is a strong extension;

(b) DP is a valuation domain.

As noted in the Introduction, it was shown in [1, Theorem 2.7] that (ii) ⇔ (RP )red

is a valuation domain. Thus, (ii) ⇔ (b), since it was shown in the proof of Theorem

2.9 (a) that (RP )red
∼= DP . As Theorem 2.9 (a) also established that (i) ⇔ (a),

the proof is complete. �

The proof of Corollary 2.10 also establishes the following result.

Corollary 2.11. Let R ∈ H and set D := Rred. Then R is a φ-PVR if and only

if R has a prime ideal P satisfying the following two conditions:

(i) D ⊆ DP/Nil(R) is a strong extension;

(ii) DP/Nil(R) is a valuation domain.

Corollary 2.12. Let R ∈ H such that Z(R) = Nil(R). Then R is a φ-PVR if

and only if R has a prime ideal P satisfying the following two conditions:
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(i) R ⊆ RP is a strong extension;

(ii) RP is a φ-chained ring.

Proof. φR(R) = R, since the hypotheses ensure that φR is the identity map.

Then φRP
(RP ) = RP by Lemma 2.8 (d). An application of Corollary 2.10 com-

pletes the proof. �

Recall that a domain R is said to be Archimedean in case ∩∞
n=1Rrn = 0 for each

r ∈ R \ U(R). The most natural examples of Archimedean domains are arbitrary

Noetherian domains and the domains of (Krull) dimension at most 1. By analogy

with the preceding definition, we say that a ring R is a nonnil-Archimedean ring

if ∩∞
n=1Rrn = Nil(R) for each r ∈ R \ (Nil(R) ∪ U(R)). Thus, any Noetherian

ring is nonnil-Archimedean, as is any ring of dimension at most 1. We leave the

proof of the following easy result to the reader.

Lemma 2.13. Let R ∈ H. Then R is a nonnil-Archimedean ring if and only if

Rred is an Archimedean domain.

We next provide some additional examples of nonnil-Archimedean rings by

giving the following analogue of [15, Proposition 2.11].

Proposition 2.14. Let R ∈ H be a ring which is not zero-dimensional, and put

D := Rred. Then the following conditions are equivalent:

(1) R is a nonnil-Archimedean ring and, for some prime ideal P of R, the

proper extension φR(R) ⊂ φRP
(RP ) is a strong extension;

(2) R is a one-dimensional φ-PVR;

(3) D is a one-dimensional PVD;

(4) D is an Archimedean domain and, for some prime ideal P of R, the proper

extension D ⊂ DP/Nil(R) is a strong extension.

Proof. Note that dim(R) = dim(Rred) = dim(D) on general principles. In par-

ticular, the domain D is not a field.

(2) ⇔ (3): In view of the above comments, it suffices to recall from [6, Propo-

sition 2.9] that R is a φ-PVR if and only if D is a PVD.

(3) ⇔ (4): Apply [15, Proposition 2.11].

(4) ⇔ (1): By Lemma 2.13, Theorem 2.9 (a) and Lemma 2.8 (c) (as well as

the proofs of these last two results), (4) is equivalent to the following condition:

R is a nonnil-Archimedean ring and, for some prime ideal P of R, the proper

extension φR(R)red ⊂ φRP
(RP )red is a strong extension. In view of Lemma 2.8

(e) and Theorem 2.1, this last condition is equivalent to (1), and so the proof is

complete. �
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By reasoning as in the proof of Corollary 2.12, one immediately infers the

following special case of Proposition 2.14.

Corollary 2.15. Let R ∈ H be a ring which is not zero-dimensional and which

satisfies Z(R) = Nil(R). Put D := Rred. Then the following conditions are

equivalent:

(1) R is a nonnil-Archimedean ring and, for some prime ideal P of R, the

proper extension R ⊂ RP is strong;

(2) R is a one-dimensional φ-PVR;

(3) D is a one-dimensional PVD.

Recall from [2] that a ring R ∈ H is called φ-completely integrally closed if

φ(R) is completely integrally closed in Tot(φ(R))(= RNil(R)). It is known that

a ring R ∈ H is φ-completely integrally closed if and only if the domain Rred

is a completely integrally closed domain [2, Lemma 2.8]. The following result is

an analogue of [15, Proposition 2.11(bis)]. Its proof can be modelled after that

of Proposition 2.14, bearing in mind the above comments, the fact that a ring

R ∈ H is a φ-chained ring if and only if Rred is a valuation domain [1, Theorem

2.7], and [15, Proposition 2.11(bis)] itself.

Proposition 2.16. Let R ∈ H be a ring which is not zero-dimensional, and put

D := Rred. Then the following conditions are equivalent:

(1) R is a φ-completely integrally closed ring and, for some prime ideal P of

R, the proper extension φR(R) ⊂ φRP
(RP ) is a strong extension;

(2) R is a one-dimensional φ-chained ring;

(3) D is a one-dimensional valuation domain;

(4) D is a completely integrally closed domain and, for some prime ideal P of

R, the proper extension D ⊂ DP/Nil(R) is a strong extension.

By reasoning as in the proof of Corollary 2.12, one immediately infers the

following special case of Proposition 2.16.

Corollary 2.17. Let R ∈ H be a ring which is not zero-dimensional and which

satisfies Z(R) = Nil(R). Put D := Rred. Then the following conditions are

equivalent:

(1) R is a completely integrally closed ring and, for some prime ideal P of R,

the proper extension R ⊂ RP is a strong extension;

(2) R is a one-dimensional φ-chained ring;

(3) D is a one-dimensional valuation domain.

Next, we give an analogue of [15, Proposition 2.14].
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Proposition 2.18. Let R ⊆ T be an integral extension of rings. Then R ⊆ T is

a strong extension if and only if Spec(R) = Spec(T ) (as sets).

Proof. The ‘if” assertion is trivial (and does not require the hypothesis of in-

tegrality). The “‘only if” assertion can be established as in the proof of [13,

Proposition 4.1]. �

We close this section with the following analogue of [15, Proposition 2.7].

Proposition 2.19. Let (B, M) be a quasilocal ring such that Nil(B) is a prime

ideal of B, and let A be any domain having K := B/M as its quotient field. Let

R be the pullback of the diagram

R −→ B

↓ ↓

A −→ B/M

in which the horizontal arrows are the usual inclusion maps and are denoted by

u, and the vertical arrows are the usual surjective maps and are denoted by v. Let

S be any ring such that R ⊆ S ⊆ B. Then:

(a) S ⊆ B is a strong extension if and only if v(S) is a PVD.

(b) R ⊆ S is a strong extension if and only if A ⊆ v(S) is a strong extension.

Proof. If b ∈ Nil(B), then bn = 0 for some positive integer n, and so v(b)n =

v(bn) = v(0) = 0, whence v(b) = 0 ∈ A and, since R is a pullback, b ∈ v−1(A) =

R. It follows that Nil(B) = Nil(R). Then Nil(S) = Nil(B) also.

Now, let B1 := Bred, M1 := M/Nil(B), K1 := B1/M1, A1 the canonical image

of A inside K1, and R1 the pullback of the following diagram

R1 −→ B1

↓ ↓

A1 −→ B1/M1,

in which the horizontal arrows are the usual inclusion maps and are denoted by

u1, and the vertical arrows are the usual surjective maps and are denoted by v1.

Observe that K1
∼= K, A1

∼= A, and K1 is the quotient field of A1. Note that

R1 ⊆ S1 := S/Nil(R) ⊆ B1. Moreover, B1 is a domain since Nil(B) is a prime

ideal of B.

According to [15, Proposition 2.7] (i), S1 ⊆ B1 is a strong extension if and

only if v1(S1) is a PVD. Therefore, in order to prove (a), it suffices to observe the

following two points: S1(= Sred) ⊆ B1 is a strong extension if and only S ⊆ B is

a strong extension (by Theorem 2.1); and one has canonical isomorphisms

v1(S1) = S1/(M/Nil(B)) ∼= S/M = v(S).
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To prove (b), recall first the corresponding domain-theoretic fact [15, Proposition

2.7] (ii). This result ensures that R1 ⊆ S1 is a strong extension if and only if

A1 ⊆ v1(S1) is a strong extension. In view of the above comments, we may use

Theorem 2.1 and argue as above, provided that we find a canonical isomorphism

R1
∼= Rred. To that end, note that viewing A1 as the image of the composite

A ↪→ K = B/M ∼= (B/Nil(B))/(M/Nil(B)) = B1/M1 = K1,

we see that A1 = {(b + Nil(B)) + M1 ∈ B1/M1 | b + M ∈ A}. Therefore,

R1 = {b + Nil(B) ∈ B1 | v1(b + Nil(B)) ∈ A1} =

{b+Nil(B) ∈ B1 | (b+Nil(B))+M1 ∈ A1} = {b+Nil(B) ∈ B1 | b+M ∈ A} =

{b + Nil(B) ∈ B1 | v(b) ∈ A} = {b + Nil(B) | b ∈ R} = Rred,

thus completing the proof. �

3. The nonoverring case

This section is devoted to analyzing strong extensions that are not necessarily

overrings. Its main result is a φ-theoretic analogue of [15, Theorem 3.1]. First, we

give two lemmas which address concerns that were trivial in the domain-theoretic

context of [15]. Lemma 3.1 will be used in the proof of Theorem 3.3 and Lemma

3.2 characterizes one of the hypotheses appearing in Theorem 3.3 (a), (d).

Lemma 3.1. Let A be a subring of a ring C. Then:

(a) Let B := AA\Z(A), the total quotient ring of A. Then there exists a ring D

such that B and C are each (unital) subrings of D if and only if each non-zero-

divisor of A is a non-zero-divisor in C.

(b) If A ⊆ C is a strong extension, then each non-zero-divisor of A is a non-

zero-divisor in C.

(c) If A ⊆ C is a strong extension, then there exists a ring D such that the

total quotient ring of A and C are each (unital) subrings of D.

Proof. (a) Suppose first that there exists a ring D that has both B and C as

(unital) subrings. We will show that if a ∈ A \ Z(A) and ac = 0 for some c ∈ C,

then c = 0. Since a has a multiplicative inverse a−1 = 1
a in B, we have that

c = (ac)a−1 = 0a−1 = 0 (in D and, hence, in C).

Conversely, suppose that each non-zero-divisor of A is a non-zero-divisor in C.

Consider the ring of fractions D := CA\Z(A). The assignment c 7→ c
1 defines a

(unital) ring homomorphism f : C −→ D. It is easy to see that the hypothesis (on

non-zero-divisors of A) ensures that f is an injection. For convenience, we use f to

identify C as a subring of D. Next, by applying the universal mapping property of
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the ring of fractions AA\Z(A) = B, obtain an (unital) R-algebra homomorphism

g : B −→ D. Specifically, g(a1

a2

) = a1

a2

for all a1 ∈ A and all a2 ∈ A \ Z(A). Once

again, it is easy to see that the hypothesis ensures that g is an injection. Next, it

is straightforward to use the hypothesis to verify that we can use g to identify B

as a subring of D without altering the identification that was effected earlier by

f . This completes the proof of (a).

(b) We will show that if a ∈ A \ Z(A) and ac = 0 for some c ∈ C, then c = 0.

Since a is not nilpotent, there exists a prime ideal P of A such that a 6∈ P (cf.

[18, p.16]). As ac = 0 ∈ P and P is C-strong with a 6∈ P , it follows that c ∈ P .

In particular, c ∈ A, whence c = 0 since a is not a zero-divisor of A.

(c) Combine (b) and (a). �

Lemma 3.2. Let R be a ring. Consider the following four conditions:

(1) No prime ideal of φ(R) contains a non-zero-divisor of φ(R);

(2) φ(R) has a unique prime ideal;

(3) R has a unique prime ideal;

(4) No prime ideal of R contains a non-zero-divisor of R.

Then:

(a) If R ∈ H, then (1) ⇔ (2) ⇔ (3).

(b) (3) ⇒ (4).

(c) If Z(R) = Nil(R), then (4) ⇒ (3).

(d) If R ∈ H and Z(R) = Nil(R), then (1) ⇔ (2) ⇔ (3) ⇔ (4).

Proof. (a) Assume that R ∈ H. Then, since ker(φ) ⊆ Nil(R), the assignment

P 7→ φ(P ) determines an order-isomorphism between the set of prime ideals of R

and the set of prime ideals of φ(R). Thus, (3) ⇔ (2). However, since φ(R) ∈ H,

the unique minimal prime ideal of φ(R) is Nil(φ(R)) = Z(φ(R)). It follows that

(2) ⇒ (1); and, since each prime ideal of φ(R) contains Nil(φ(R)), that (1) ⇒

(2).

(b) Suppose that R has a unique prime ideal P . Then P is necessarily a

minimal prime ideal of R, whence P ⊆ Z(R) by [18, Theorem 84]. It is then clear

that (4) holds.

(c), (d) It remains only to prove that if Z(R) = Nil(R), then (4) ⇒ (3). To

do so, note that Z(R) is then the unique minimal prime ideal of R, and replace

“φ(R)” with “R” in the proof in (a) that (1) ⇒ (2). The proof is complete. �

As in [18, p. 28], it will be convenient to let LO denote the lying-over property

of ring extensions.
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Theorem 3.3. Let R ∈ H and let T be any ring that contains φ(R) as a (unital)

subring. Then:

(a) Assume also that (Tot(φ(R)) =)RNil(R) ⊆ T . Then:

(a1) If, in addition, R has more than one prime ideal and φ(R) ⊆ T is a

strong extension, then R is a φ-PVR and U(T ) = U(RNil(R)).

(a2) If, in addition, T has only one minimal prime ideal and both R is a

φ-PVR and U(T ) = U(RNil(R)), then φ(R) ⊆ T is a strong extension.

(a3) If, in addition, R has more than one prime ideal and T has only one

minimal prime ideal, then φ(R) ⊆ T is a strong extension if and only if both R

is a φ-PVR and U(T ) = U(RNil(R)).

(b) If φ(R) ⊆ T is a strong extension, then both φ(R) ⊆ T ∩ RNil(R) and

T ∩ RNil(R) ⊆ T are strong extensions.

(c) Assume also that each non-zero-divisor of φ(R) is a non-zero-divisor in T .

If φ(R) ⊆ T ∩RNil(R) satisfies LO and both φ(R) ⊆ T ∩RNil(R) and T ∩RNil(R) ⊆

T are strong extensions, then φ(R) ⊂ T is a strong extension.

(d) Assume also that R has more than one prime ideal and that each non-zero-

divisor of φ(R) is a non-zero-divisor in T . If φ(R) ⊆ T is a strong extension such

that T ∩ RNil(R) = φ(R), then U(T ) = U(φ(R)).

Proof. (a) Consider the domain D := Rred, canonically identified with φ(R)red

as in Lemma 2.8 (c), put K := RNil(R), and recall that Kred can be viewed as the

quotient field of D. Observe that we have the tower of rings D ⊆ Kred ⊆ Tred.

We claim that it follows from [15, Theorem 3.1 (i)] that we have the following

three facts:

(α) If, in addition, R has more than one prime ideal and D ⊆ Tred is a

strong extension, then D is a PVD and U(Tred) = U(Kred).

(β) If, in addition, T has only one minimal prime ideal and both D is a

PVD and U(Tred) = U(Kred), then D ⊆ Tred is a strong extension.

(γ) If, in addition, R has more than one prime ideal and T has only one

minimal prime ideal, then D ⊆ Tred is a strong extension if and only if both D is

a PVD and U(Tred) = U(Kred).

Evidently, (γ) would follow if we prove both (α) and (β). We next show how to

adapt the proof of [15, Theorem 3.1 (i)] in order to prove (α) and (β).

In carrying out the above-mentioned adaptation in order to prove (α), we only

need to know that some prime ideal of D = R/Nil(R) contains a nonzero element

(called “y” on [15, p. 181, line 9]). This is, in fact, the case since the assumption

that R has more than one prime ideal ensures that Nil(R) is not a maximal ideal

of R (cf. [18, Theorem 10]).
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As for the proof of (β), the only possible difficulty in carrying out the above

adaptation is to legitimize the meaning of “(uv)−1” (as on [15, p. 181, line 14]),

where Q ∈ Spec(φ(R)) and u, v ∈ Tred \ Q. This, in turn, is handled by the

assumption that T has only one minimal prime ideal, for Tred is then a domain.

Now that the above claim has been proved, we will show that to use (α) to

prove (a1) and how to use (β) to prove (a2). This will complete the proof of (a),

as it is clear that (a3) is just the result of combining (a1) and (a2).

Recall from [6, Proposition 2.9] that R is a φ-PVR if and only if D is a PVD.

Therefore, in view of Theorem 2.1, it suffices to show that the following two

conditions are equivalent:

(λ) Nil(φ(R)) = Nil(T ) and U(Tred) = U(Kred);

(µ) U(T) = U(K).

The proof of this equivalence depends on the following well-known key fact: in any

(commutative) ring A, the sum of any unit of A and any nilpotent element of A

is a unit of A. This “key fact” easily implies that if A is any ring, then U(Ared) =

{a + Nil(A) ∈ A/Nil(A) =: Ared | a ∈ U(A)}. In particular, U(Tred) = {t +

Nil(T ) | t ∈ U(T )} and U(Kred) = {k + Nil(K) | k ∈ U(K)}.

Suppose that (λ) holds. Since φ(R) ⊆ K ⊆ T , it follows that Nil(φ(R)) =

Nil(K) = Nil(T ). To prove (µ), it is enough to show that if t ∈ U(T ), then

t ∈ K. By the “key fact” and (λ), we have that t+Nil(T ) ∈ U(Tred) = U(Kred),

whence t + Nil(T ) = t + Nil(K) = k + Nil(K) for some k ∈ U(K). Thus,

t ∈ k + Nil(K) ⊆ K, as desired.

It remains to show that (µ) ⇒ (λ). Suppose that (µ) holds. By the above

descriptions of U(Tred) and U(Kred), it is enough to prove that Nil(φ(R)) =

Nil(T ) (hence necessarily = Nil(K)). Of course, Nil(φ(R)) ⊆ Nil(T ). For the

reverse inclusion, consider any w ∈ Nil(T ). Then, by the “key fact” and (µ),

we have that 1 + w ∈ U(T ) = U(K) ⊆ K, whence w = (1 + w) − 1 ∈ K and

w ∈ Nil(K) = Nil(RNil(R)) = Nil(φ(R)), the last step being provided by the

fact (iv) that was recalled in the Introduction. This completes the proof of (a).

(b) Note that the intersections mentioned in the statement of (b) make sense by

virtue of Lemma 3.1 (c). The proof of (b) proceeds by assuming that φ(R) ⊆ T is

a strong extension and adapting the proof of [15, Theorem 3.1 (ii)], with changes

such as “φ(R)” replacing “R” as needed. In particular, by using the fact that

T ∩RNil(R) is an overring of φ(R), one obtains a non-zero-divisor r of φ(R) (rather

than just a nonzero element) such that r(xy) ∈ φ(R). With the observation that

r−1 ∈ Tot(φ(R)) = RNil(R), the proof is then easily adapted.

(c) Note that the intersections mentioned in the statement of (b) make sense

by virtue of Lemma 3.1 (a). The proof of (c) proceeds by adapting the proof of
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[15, Theorem 3.1 (iii)], with “φ(R)” replacing “R” and “RNil(R)” replacing “K”

as needed. In particular, one works with a prime ideal P of φ(R) and elements

x, y ∈ T such that xy ∈ P . The only possible difficulty in adapting the proof

given in [15] is that “x−1” may not be meaningful. However, in that case, x is an

element of the unique maximal ideal of RNil(R); i.e., x ∈ Nil(φ(R)) ⊆ P , which

is a desirable outcome.

(d) Note that the intersection mentioned in the statement of (d) make sense

by virtue of Lemma 3.1 (c). The proof of (d) proceeds by adapting the proof of

[15, Theorem 3.1 (iv)], with “φ(R)” replacing “R” and “RNil(R)” replacing “K”

as needed. Our task is to show that if x ∈ U(T ), then x ∈ φ(R) = T ∩ RNil(R),

or equivalently, that x ∈ RNil(R). Because of the hypothesis that R has more

than one prime ideal, Lemma 3.2 (a) yields a prime ideal P of φ(R) containing

some non-zero-divisor y. As in the proof in [15], it is enough to show that if

yx−1 ∈ P , then x ∈ φ(R), or equivalently, that x ∈ RNil(R). This can be done by

aping the calculation in [15] once one notices that w := yx−1 is a non-zero-divisor

in φ(R). (In view of the proof of Lemma 3.1 (a), the point is that y remains a

non-zero-divisor in the ring of fractions S := Tφ(R)\Z(φ(R)), whence w is a non-

zero-divisor in S and, a fortiori, a non-zero-divisor in its subring φ(R).) It follows

that “(yx−1)−1” is meaningful in Tot(φ(R)) = RNil(R) and the proof can now be

completed as in [15]. �

We pause to explain the unavoidability of the hypothesis in Theorem 3.3 (a1),

(a3) that R has more than one prime ideal. The underlying reason also accounts

for the riding hypothesis in [15, Section 3] that the ambient domain there was not

a field. In fact, without these hypotheses, the “only if” conclusions of Theorem

3.3 (a3) and [15, Theorem 3.1 (i)] would each fail. To see this, suppose that

K ⊂ T is an extension of (distinct) fields. Since 0 is trivially T -strong, we see

that φK(K) = K ⊆ T is a strong extension. However, U(T ) = T \{0} 6= K\{0} =

U(K) = U(KNil(K)).

In the spirit of Corollaries 2.12, 2.15 and 2.17, one immediately infers the

following special case of Theorem 3.3.

Corollary 3.4. Let R ∈ H such that Z(R) = Nil(R), and let T be any ring that

contains R as a (unital) subring. Then:

(a) Assume also that (Tot(R) =)RNil(R) ⊆ T . Then:

(a1) If, in addition, R has more than one prime ideal and R ⊆ T is a strong

extension, then R is a φ-PVR and U(T ) = U(RNil(R)).

(a2) If, in addition, T has only one minimal prime ideal and both R is a

φ-PVR and U(T ) = U(RNil(R)), then R ⊆ T is a strong extension.
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(a3) If, in addition, R has more than one prime ideal and T has only one

minimal prime ideal, then R ⊆ T is a strong extension if and only if both R is a

φ-PVR and U(T ) = U(RNil(R)).

(b) If R ⊆ T is a strong extension, then both R ⊆ T ∩RNil(R) and T ∩RNil(R) ⊆

T are strong extensions.

(c) Assume also that each non-zero-divisor of R is a non-zero-divisor of T . If

R ⊆ T ∩ RNil(R) satisfies LO and if both R ⊆ T ∩ RNil(R) and T ∩ RNil(R) ⊆ T

are strong extensions, then R ⊆ T is a strong extension.

(d) Assume also that R has more than one prime ideal and that each non-zero-

divisor of φ(R) is a non-zero-divisor in T . If R ⊆ T is a strong extension such

that T ∩ RNil(R) = R, then U(T ) = U(R).

In the spirit of parts (b) and (c) of Corollary 3.4, we close by generalizing [15,

Proposition 3.3] from domains to rings.

Proposition 3.5. Let R ⊆ A ⊆ T be rings such that A is integral over R. Then

R ⊆ T is a strong extension if and only if both R ⊆ A and A ⊆ T are strong

extensions.

Proof. The “if” assertion is immediate from Proposition 2.18. Conversely, sup-

pose that R ⊆ T is a strong extension. Then, a fortiori, R ⊆ A is a strong

extension. Hence, by Proposition 2.18, these two facts imply that Spec(R) =

Spec(T ) and Spec(R) = Spec(A), respectively. As Spec(A) = Spec(T ), another

application of Proposition 2.18 shows that A ⊆ T is a strong extension. �
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